Solving Design Problems Using Generative Deep Learning Frameworks with Multiple Objectives

November 6, 2021 /

ACADIA 2021 – Realignments: toward critical computation

On November 4th, Ridvan Kahraman, Zhetao Dong, Kurt E. Drachenberg, Katja Rinderspacher and Christoph Zechmeister will be presenting their paper, "Solving Design Problems Using Generative Deep Learning Frameworks with Multiple Objectives" at ACADIA 2021 (online).

In recent years, generative machine learning methods such as variational autoencoders (VAEs) and generative adversarial networks (GANs) have opened up new avenues of exploration for architects and designers. The presented work explores how these methods can be expanded by incorporating multiple abstract criteria directly into the formulation of the algorithm that negotiates these complex criteria and proposes a fitting design. It draws inspiration from the works of several design theorists who have developed such goal-or-ented approaches to design, and sets up multiple-objective VAE and GAN frameworks with this idea in mind. The research demonstrates that by incorporating multiple constraints using auxiliary discriminator networks, the developed algorithms are able to generate innovative solutions to two example problems: the design of 2D digits, and the design of 3D voxel chairs. By speculating and examining the role of the designer in data based generative computational design workflows, the research aims to provide an approach for solving design tasks in the age of big data.

Further information con the conference an be found here: ACADIA 2021
To register, please click here: Register

ACADIA 2021 Gallery:

To the top of the page