Material Programming

Research Area

The concept of material programming denotes a method of design in which advanced functions are encoded directly within physical fabrication logics and syntax material systems, often in place of digital controls, sensors, and actuators. At the ICD, material programing is investigated through computational fabrication deployed as innovative methods of form generation (self-shaping manufacturing) and form adaptation (adaptive materials, wearables, and building systems) with a specific focus on the utilization of natural and bio-based materials.

Selected Publications

  1. 2023

    1. Sahin, E. S., Cheng, T., Wood, D., Tahouni, Y., Poppinga, S., Thielen, M., Speck, T., & Menges, A. (2023). Cross-Sectional 4D-Printing: Upscaling Self-Shaping Structures with Differentiated Material Properties Inspired by the Large-Flowered Butterwort (Pinguicula grandiflora). Biomimetics, 8(2), Article 2.
    2. Wood, D., Cheng, T., Tahouni, Y., & Menges, A. (2023). Material Programming for Bio-inspired and Bio-based Hygromorphic Building Envelopes. In J. Wang, D. Shi, & Y. Song (Eds.), Advanced Materials in Smart Building Skins for Sustainability (1st ed.). Springer Nature Switzerland AG.
    3. Speck, T., Cheng, T., Klimm, F., Menges, A., Poppinga, S., Speck, O., Tahouni, Y., Tauber, F., & Thielen, M. (2023). Plants as inspiration for material-based sensing and actuation in soft robots and machines. MRS Bulletin.
  2. 2022

    1. Akbar, Z., Wood, D., Kiesewetter, L., Menges, A., & Wortmann, T. (2022). A Data-Driven Workflow for Modelling Self-Shaping Wood Bilayer, Utilizing Natural Material Variations with Machine Vision and Machine Learning. In J. van Ameijde, N. Gardner, K. H. Hyun, L. Dan, & U. Sheth (Eds.), CAADRIA proceedings: Vol. Volume 1 (pp. 393–402). CAADRIA.
    2. Correa, D. (2022). 4D printed hygroscopic programmable material architectures. ICD Research Report, 9, Article 9.
  3. 2021

    1. Cheng, T., Wood, D., Kiesewetter, L., Özdemir, E., Antorveza, K., & Menges, A. (2021). Programming material compliance and actuation: hybrid additive fabrication of biocomposite structures for large-scale self-shaping. Bioinspiration & Biomimetics, 16(5), Article 5.
    2. Tahouni, Y., Krüger, F., Poppinga, S., Wood, D., Pfaff, M., Rühe, J., Speck, T., & Menges, A. (2021). Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness. Bioinspiration & Biomimetics.
    3. Özdemir, E., Kiesewetter, L., Antorveza, K., Cheng, T., Leder, S., Wood, D., & Menges, A. (2021). Towards Self-shaping Metamaterial Shells: A Computational Design Workflow for Hybrid Additive Manufacturing of Architectural Scale Double-Curved Structures. Proceedings of the 2021 DigitalFUTURES (CDRF 2021), 275–285.
    4. Cheng, T., Thielen, M., Poppinga, S., Tahouni, Y., Wood, D., Steinberg, T., Menges, A., & Speck, T. (2021). Bio-Inspired Motion Mechanisms: Computational Design and Material Programming of Self-Adjusting 4D-Printed Wearable Systems. Advanced Science, 8(13), Article 13.
    5. Wood, D. (2021). Material programming for fabrication : integrative computational design for self-shaping curved wood building components in architecture. ICD Research Report, 6, Article 6.
  4. 2020

    1. Wood, D., Gronquist, P., Bechert, S., Aldinger, L., Riggenbach, D., Lehmann, K., Ruggeberg, M., Bugert, I., Knippers, J., & Menges, A. (2020). From Machine Control to Material Programming: Self-Shaping Wood Manufacturing of a High Performance Curved CLT Structure -- Urbach Tower. Fabricate 2020: Making Resilient Architecture, 50--57.
    2. Cheng, T., Wood, D., Wang, X., Yuan, P., & Menges, A. (2020). Programming Material Intelligence: An Additive Fabrication Strategy for Self-Shaping Biohybrid Components. Lecture Notes in Artificial Intelligence: Biomimetic and Biohybrid Systems - Proceedings of the Living Machines 2020 Conference, 12413, 36--45.
    3. Correa, D., Poppinga, S., Mylo, M., Westermeier, A., Bruchmann, B., Menges, A., & Speck, T. (2020). 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philosophical Transactions of the Royal Society A, 378, 20190445.
    4. Cheng, T., Tahouni, Y., Wood, D., Stolz, B., Mülhaupt, R., & Menges, A. (2020). Multifunctional Mesostructures: Design and Material Programming for 4D-printing. Symposium on Computational Fabrication (SCF ’20).
    5. Tahouni, Y., Cheng, T., Wood, D., Sachse, R., Thierer, R., Bischoff, M., & Menges, A. (2020). Self-shaping Curved Folding: a 4D-printing method for fabrication of curved creased origami structures. Symposium on Computational Fabrication (SCF ’20).
  5. 2019

    1. Grönquist, P., Wood, D., Hassani, M., Wittel, F. K., Menges, A., & Ruggeberg, M. (2019). Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures. Science Advances, 5(9), Article 9.
  6. 2018

    1. Wood, D., Vailati, C., Menges, A., & Rüggeberg, M. (2018). Hygroscopically actuated wood elements for weather responsive and self-forming building parts – Facilitating upscaling and complex shape changes. Construction and Building Materials, 165, 782–791.
    2. Poppinga, S., Zollfrank, C., Prucker, O., Ruehe, J., Menges, A., Cheng, T., & Speck, T. (2018). Toward a New Generation of Smart Biomimetic Actuators for Architecture. Advanced Materials, 30(19), Article 19.
  7. 2016

    1. Wood, D., Correa, D., Krieg, O., & Menges, A. (2016). Material computation - 4D timber construction: towards building-scale hygroscopic actuated, self-constructing timber surfaces. International Journal of Architectural Computing (IJAC), 14(1), Article 1.
  8. 2015

    1. Correa, D., Papadopoulou, A., Guberan, C., Jhaveri, N., Reichert, S., Menges, A., & Tibbits, S. (2015). 3D-Printed Wood: Programming Hygroscopic material transformation. 3D Printing and Additive Manufacturing, 2(3), Article 3.
  9. 2014

    1. Reichert, S., Menges, A., & Correa, D. (2014). Meteorosensitive Architecture: Biomimetic Building Skins Based on Materially Embedded and Hygroscopically Enabled Responsiveness. Computer-Aided Design, 60, 50–69.

Contact Information

This image shows Tiffany Cheng

Tiffany Cheng

M.DesS, B.Arch

Research Associate

To the top of the page